DIN6331-91 (1728x2293x2 tiff)

Fax:062084389

Aug 17 2001 9:37 P.01/02

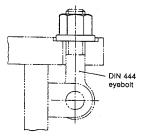
		Hexagon collar nuts with a height of 1,5 <i>d</i>						<u>DIN</u> 6331	
echskan	tmuttern 1,5	ā d hoch, m	it Bund					Supersec	les March 1987 editio
n keeping	with curren	t practice in	standards	published b	ly the Intern	ational Orgi	anization fo		ation (ISO), a comma hi
	l throughou	t as me de	omai mark	er.					
				Di	mensions i	n mm			
Scop his stand eassembl	be and fle ard specifie ied.	eld of app shexagon n	lication iuts design	ed for use w	rithout was	ners, in asse	mblies tha	t will be frequ	ently disassembled ar
Dime	ensions a	nd desia	nation						
	t unspecifie			as appropri	ate.				
		d,			90° to 120°			<i>q</i> ¹	
d	n of an M 1 a js14	<i>d</i> 1 h13	He min.	a max.	e min.	31 - M 12 <i>m</i> js15	- 10	s Limit deviations	Approx. mass (7,85 kg/dm ³), per 1000 units, in kg
d M 6	a js14 7	<i>d</i> ₁ h13 14	He min.	2xagon ni da max. 6,75	e min. 11,05	m js15 9	10	Limit	(7,85 kg/dm ³), per 1000 units,
d M 6 M 8	a js14 7 3,5	d ₁ h13 14 18	He min. 6 8	2xagon nu d _a max. 6,75 8,75	e min. 11,05 14,38	m js15 9 12	10	Limit	(7,85 kg/dm ³), per 1000 units, in kg
d M 6 M 8 M 10	a js14 7 3,5 4	d ₁ h13 14 18 22	He min. 6 8 10	2xagon nu da max. 6,75 8,75 10,8	e min. 11,05 14,38 17,77	m js15 9 12 15	10 13 16	Limit	(7,85 kg/dm ³), per 1000 units, in kg 5
d M 6 M 8 M 10 M 12	a js14 7 3,5 4 4	d ₁ h13 14 18 22 25	He min. 6 8 10 12	Aa max. 6,75 8,75 10,8 13	e min. 11,05 14,38 17,77 20,03	m js15 9 12 15 18	10 13 16 18	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5
d M 6 M 8 M 10 M 12 M 16	a js14 7 3.5 4 4 5	d ₁ h13 14 18 22 25 31	He min. 6 8 10 12 16	Aa max. 6,75 8,75 10,8 13 17,3	e min. 11,05 14,38 17,77 20,03 26,75	m js15 9 12 15 18 24	10 · 13 16 18 24	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71
d M 6 M 8 M 10 M 12	a js14 7 3,5 4 4	d ₁ h13 14 18 22 25	He min. 6 8 10 12 16 20	xagon nt 4 max. 6,75 8,75 10,8 13 17,3 21,6	e min. 11,05 14,38 17,77 20,03 26,75 33,53	m js15 9 12 15 18 24 30	10 13 16 18 24 30	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135
d M 6 M 8 M 10 M 12 M 16 M 20	a js14 7 3,5 4 4 5 6 6	d ₁ h13 14 18 22 25 31 37 45	He min. 6 8 10 12 16 20 24	max. 6,75 8,75 10,8 13 17,3 21,6 25,9	e min. 11,05 14,38 17,77 20,03 26,75 33,53 39,98	m js15 9 12 15 18 24 30 36	10 13 16 18 24 30 36	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135 230
d M 6 M 8 M 10 M 12 M 16 M 20 M 24	a js14 7 3,5 4 4 5 6 6 6 7	d ₁ h13 14 18 22 25 31 37 45 50	He min. 6 8 10 12 16 20 24 27	xagon nu fa max. 6,75 8,75 10,8 13 17,3 21,6 25,9 29,1	e min. 11,05 14,38 17,77 20,03 26,75 33,53 39,98 45,63	m js15 9 12 15 18 24 30 36 40	10 13 16 18 24 30 36 41	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135 230 320
d M 6 M 8 M 10 M 12 M 16 M 20 M 24 M 27	a js14 7 3,5 4 4 5 6 6	d ₁ h13 14 18 22 25 31 37 45 50 58	He min. 6 8 10 12 16 20 24 27 30	xagon nu da max. 6,75 8,75 10,8 13 17,3 21,6 25,9 29,1 32,4	e min. 11,05 14,38 17,77 20,03 26,75 33,53 39,98 45,63 51,28	m js15 9 12 15 18 24 30 36 40 45	10 13 16 18 24 30 36 41 46	Limit deviations	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135 230 320 470
d M 6 M 8 M 10 M 12 M 16 M 20 M 24 M 27 M 30	a js14 7 3,5 4 4 5 6 6 6 7 7 8	d ₁ h13 14 18 22 25 31 37 45 50	He min. 6 8 10 12 16 20 24 27 30 36	Aa max. 6,75 8,75 10,8 13 17,3 21,6 25,9 29,1 32,4 38,9	e min. 11,05 14,38 17,77 20,03 26,75 33,53 39,98 45,63 51,28 61,31	m js15 9 12 15 18 24 30 36 40 45 54	10 13 16 18 24 30 36 41 46 55	Limit deviations h13	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135 230 320 470 810
d M 6 M 8 M 10 M 12 M 16 M 20 M 24 M 27 M 30 M 36	a js14 7 3,5 4 4 5 6 6 6 6 6 7 7 8 10	d ₁ h13 14 18 22 25 31 37 45 50 58 68	He min. 6 8 10 12 16 20 24 27 30	xagon nu da max. 6,75 8,75 10,8 13 17,3 21,6 25,9 29,1 32,4	e min. 11,05 14,38 17,77 20,03 26,75 33,53 39,98 45,63 51,28	m js15 9 12 15 18 24 30 36 40 45	10 13 16 18 24 30 36 41 46	Limit deviations h13	(7,85 kg/dm ³), per 1000 units, in kg 5 12,4 25,5 36,5 71 135 230 320 470

. . . .

Fax:062084389

Aug 17 2001 9:38

Page 2 DIN 6331


3 Property class (material)

The nut material shall be of property class 8 or, preferably, 10, as specified in ISO 898 Part 2. The steel from which the nuts are manufactured may contain a certain amount of lead.

4 Hardness and tolerances

Property class 8 nuts shall have a hardness of 188 to 302 HV 30 and property class 10 nuts, of 240 to 302 HV 30. Nuts shall be of product grade A as specified in ISO 4759 Part 1.

Example of application

Standards referred to

 DIN 444
 Eyebolts

 ISO 272:1982
 Fasteners; hexagon products; widths across flats

 ISO 898-2:1980
 Mechanical properties of fasteners; nuts with specified proof load values

 ISO 4759-1:1978
 Tolerances for fasteners; bolts, screws, and nuts with thread diameters from 1,6 to 150 mm and product grades A, B and C

Other relevant standards

 DIN
 257 Part 2
 Fasteners: technical delivery conditions; product grades and tolerances

 DIN 6784
 Workpiece edges; concepts and indications on drawings

Previous editions

DIN 6331: 01.41, 07.62, 03.65x, 03.87.

Amendments

In comparison with the March 1987 edition, the widths across flats for sizes M 10 and M 12 have been harmonized with that specified in ISO 272.

International Patent Classification

F 16 B 37/00 F 16 B 39/24