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Supersedes January 1972 edition

1 Field of application and scope

This standard applies both to the evaluation and assess:
ment of measurements of physical quantities (see :
DIN 1312 Part 1 and DN 1313) and to the assessment
of the measuring instruments and measuring equipment
used for this purpose,

tt is the object of this standard to lay down the termino-
logy for the uncertainty of measurement and aiso rules
for its numerical determination for the case of a single
{more especialtly directly} measured physical quantity;
to cover other cases, e, 0. & physical quantity as a fune-
tion of two or more other quantities, a further standard
is in preparation. Moreover in clause 8 of this standard
basic concepts for assessing measuring instruments and
measuring equipment are defined.

2 General principles

It is the object of every measurement to determine the
true value of a measurand, Because of the influences
mentioned in subclause 3.1 and affecting the measure-
ment, errors of measurement occur (hereafter usualky
referred to in brief as “errors’’), They are the reason why
it is impossible to find the true value Xy, . |1 is therefore
assumed notionally that the values obtained from several
individual measurements of a series of measurements,
namely the measured values xy, are realizations of a ran-
dom variable X. This random variable X obeys a proba-
bility distribution characterized in particular by two
parameters which ere the expectation g and the standard
deviation o. In the absence of systematic errors {see sub-
clause 3.3) the expectation u agrees with the true value

ure of variability for the random error of an individual
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*y, of the measurand, The standard deviation o is a meas-

measured value ({see subclause 3.2} from the expectation
of the measurand.

The parameters ¢ and o of the probability distribution
are generally not known, The problem is to determine
estimates for them from a series of measurements. Usu-
ally the arithmetic meanX (see subclause 5.1) is used as
the estimate for u and the (empirical) standard deviation s
of the series of measurements {see subclause 5.2} as the
estimate for 0. Because the measured values are realiza-
tions of a random variable, X will deviate from w and s
from o in a random manner.

On the basis of an assumption concerning the type of
distribution of the measured values (normal distribution
is assumed in this standard} it is possible with the aid of
X and 5 to stete a confidence interval which, with a given
probability — the confidence level (1 — &} — covers the
expectation u (see subclause 5.3}, This confidence inter-
val allows for the influence of the random errors on the
result of the measurement {see DIN 1319 Part 1).
Known systematic errors are eliminated by making cor-
rections {see subclause 3.3.2). An attempt is made to
dea! with unknown systematic errors {see subclause 3.3.3)
by widening the confidence interval. How the confidence
interval is widened depends on assumptions derived
empirically regarding the unknown systematic errors

(see subclause 6.2}.

The final result of measurement from a series of meas-
urements consists of the mean value, which has been cor-
rected for known systematic errors, combined with an
interval in which the true value x,, of the measurand is
presumed to lie. The difference between the upper limit
of this interval and the corrected mean value or the dif-
ference between the corrected mean value and the lower
limit of the interval is termed the uncertainty of measure-
ment. Usually, but not always, the two differences are
equal in value {cf. subclauses 6.3 and 7.1},

Continued on pages 2 to 15
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3 Causes and types of errars of measurement
3.1 Causes of errors of measurement

Every measured value and hence every rasult of measure-
mant of a measurand is /nfluenced by imperfections of
the measuring instruments and measuring equipment
(including material measures), of the method of measura-
ment, and of the maasurement object, also by the environ-
ment and the obsee:vers; moreover these influences are
also subject to variation with time.

Environmental influances to be taken into account are
local differences and variations with time of, for example,
temperature, atmospheric pressure, humidity, voltage,
frequency, external electrical or magnetic fields {see also
subclause B.3.1, Note 2 regarding influence guantities}.
influences due to the observer depend on the qualities
and capabilities of the obsarvers (e. g. vigilance, practice,
visual acuity, estimating ability).

Apart from such influences, a result of measurement may
be falsified through mistakes on the part of the observers,
through choice of 5 method of measurement or evalua-
tion which is unsuitable far determining the measurand
observed, and also by non-observance of known disturb-
ing influences. Fauity practices of such kinds are not
dealt with in this standard.

3.2 Random errors, variablity of measured values

Non-controllable, non-unilaterally acting influences dur-
ing a number of measurements on the same measurement
object within a series of measurements lead to a variabil-
ity of the measured values about the mezn value of the
series of measurements (see subclause 5,1) and hence to
random errors of the measured values from the true value.

The.random variability may be characterized by suitable

statistical quantities and stated numerically thraugh their

estimates {see clause 5). The prerequisite for refiable esti-
mates is that a sufficient number of measured values
obtained under repeatability conditions {see subclayse

4.1) is available. The random variability of the measured

vaiues — in conjunction with the unknown systematic

errors {see subclause 3.3.3} — makes a result of measure-
ment uncertain.

The value taken as the estimate for the true value is the

mean, so long as no systematic errors arise,

Note. When the same observer repeats on the same rmeas-
urement object 2 measurement of the same meas.
urand using the same measuring instrument under
the same conditions, the individual measured
values will deviate from one another, they will
exhibit "random variability” {see also clause 5}
The variability of the individual values in a series of
easurements may aiso be brought about by the
fact that the measurement object itself changes
while the measurement is proceeding, i.e. its prop-
erty undergoing measurement, namely the rmeas-
urand, is subject to random fluctuations. In this
case also, which commonly arises in practice, the
forming of the mean and of the standard deviation
is appropriate, and in such cases also a confidence
interval can be stated which now takes account of
the variability of the measurand,

A major source of variability may also be the inho-
mogeneity of the measurermnment object; the result

of measurement may often only be obtainable as a
mean of a larger number of different individual
measurements on the same measurement object,
e.g. the hardness of a stesl com ponent,

3.3 Systematic arrors

3.3.1 General

There are

a) systematic errors which throughout the measurement
maintain a constant magnitude and a given sign (either
plus or minus) {e.g. as a result of incorrect adjustment
of the measuring instrument):

b} systematic errorswhich vary with time and are brought
about by causes which effect a change in the measurand
in a certain direction (e. g. directional thermal response,
wear, ageing). As far as possible such changes with
time are to be avoided during the measurement.

Systematic errors are present in every result of measure-

ment and cannot be discovered under repeatability con-

ditions {see subclause 4.1),

Note. Strict differentiation between random errors and
unknown systematic errors (see subclause 333)is
not always practicable and meaningful. Under cer-
tain preconditions, . g. in round robin tests with

" a sufficient number of participants, systematic
errors also can be dealt with like random errors,

3.3.2 Known systematic errors

- Known systematic errors — both constant and varying

with time — shall be allowed for by making corrections

as specified in subclause 8.2.5, tn this way a correctad

measured value is obtained. If a measured value affected

by systematic errors is left uncorrected , the result will

be /ncorrect.

Note. The known systematic errors include, for example,

‘ systematic errors of measuring instruments deter-
mined by calibration; these are allowed for by cor-
recting as indicated in subclause 8.2 5,

3.3.3 Unknown systematic errors

There are also systermnatic errors which are inferred or
made apparent on the basis of experimental experience,
but whose magnitude and sign cannot be definitively
stated, or are entirely unknown. Such unknown system-
atic errors can, however, in many cases be estimated by
non-statistical methods); in such cases they have to be
additionally taken into account in a suitable manner
when calculating the uncertainty of measurement (see
subclauses 6.2 and 6.3). In addition, there are also
unknown systematic errors which are not capable of
estimation,

Note. Unknown systematic errors may be caused by the
fact that a measuring instrument has an unknown
error or by failure to make allowance for unavoid-
able disturbing influences affecting a rmethod of
measurement.

Example:
Heat losses through conduction when making
caloric and temperature measurements. In such
cases elucidation can only be obtained by apply-
ing measuring instruments or methods of meas-
urement of a different or superior kind,
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4 Test conditions

Each time before an assessment of the measured values
of a measurand is made, a check shali be carried out to
determine whether the measurements have been per-
formed under the same test conditions and independ-
ently of one another. it has proved desirable to single
out the following two boundary cases from the many
kinds of possible test conditions (see DIN 55 350 Part 13
and DIN 150 5725).

4.1 Repeatability conditions

Repeatability conditions exist when the same observer
carries out measurements by & specified method of meas-
urernent oh the same measurement object under the same
test conditions (same measuring instrument, same labora-
tory} a number of times within short periods of time.
The standard deviation under repeatability conditions is
termed the repeatability standard deviation o,. From a
known repeatability standard deviation g, it is possible
to calculate the value below which the magnitude of the
difference of two measured values under repeatability
conditions can be expected to lie with a probability of
05 %; this is the repeatability.

r=196420.=2770,

(DIN IS0 5725 uses the numerical value 2,83

(=2 -\/5) instead of 2,77},

Under repeatability conditions the same systematic errors
usually oceur with each measurement. They are therefore
not determinable from the series of repeatability meas- .
urements.

4.2 Reproducibility conditions

Reproducibility conditions exist when different obser-
vers carry out measurements by a specified method of
measurerment on the same measurement object under dif-
ferent test conditions {differant measuring instruments,
different measurement locations or laboratories) at dif-
ferent times.

The standard deviation under reproducibility conditions
is termed the reproducibility standard deviation og .
From a known reproducibility standard deviation og it
is possible to calculate the value below which the magni-
tude of the difference of two measured values under
reproducibility conditions can be expected to lie with a
probability of 95 %; this is the reproducibility

R=196{20g=277 0y

(DIN 1SQ 5725 uses the numerical value 2,83

{=2-+/2) instead of 2,77).

Under reproducibility conditions, comparison of the

measured values from the different laboratories reveals

systematic errors differing from one another which are
not directly determinable in any single laboratory.

Example:

With many standardized methods of measurement
in the field of mineral oil testing the reproducibility
standard deviation og is about twice as large as the
repeatability standard deviation o,.

Mote 1. As a qualitative generic term for the (quantitative)
magnitudes repeatability standard deviation, repeat-
ability, reproducibility standard deviation, and
reproducibility the term "'precision’’ is often used,
see DIN 55 350 Part 13.
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Note 2. Since the values of the repeatability standard
deviation and reproducibility standard deviation
are determined in practice in round robin tests of
comparatively tong duration {also involving a larger
number of participating laboratories), the empirical
standard deviations s, and sy (see subclause 5.2)
can be regarded as adequate estimates for o, and
og for the purpaose of statistical evaluation.

5 Theoretical determination of the random
variability of measured values of a series
of measurements

5.1 Arithmetic mean x

If, in a series of measurements, n individual measured
values xq, ..., X;, . .., X, which are independent of one
another, are measured under repeatabtlity conditions (see
subclause 4.1} the arithmetic mean of these n individual
values, referred to in brief as the mean x {pronounced as
x bar) is given by

F=— T x (1)

X being an estimate for the expectation .

Note. i ndividual values are fndependent of one another if
successive measurements, and hence the individual
measured values obtained, are not influenced by
those which have gone before.

5.2 (Empirical) standard deviation s,

coefficient of variation v
The most important operand for the numerical determi-
nation of the random variability of » individual values of
a series of measurements about their mean x is the
{empirical) standard deviation s:

1 " 1 n 1 " 2
s=\— L n=Rf={—|LA-—1T || @
n=1;=1 n—11;u i

The square of the standard deviation is termed the vari-
ance s2 or 02, The {empirical) standard deviation s is the
positive root of the variance s2 and an estimate for the
standard deviztion a.

Instead of the (empirical) standard deviation s, the (empir-
jca!) coefficient of variation v is also used. v is often
expressed in %. The following applies for X + 0:

s
v=— (3)
|%]

Note. The plotting of the cumulative sum curve of indi-
vidual values obtained also leads to an assessment
of the results of tests. !n this connection reference
is made to DIN 55 302 Part 1 and Part 2 “'Statisti-
cal evaluation methods; mean and variability.”.

5.3 Confidence limits and confidence interval
for expectation u

5.3.1 General

11 shall not be assumed {see clause 2} that the mean ¥ is
equal to the expectation g or the true value x,,, not even
H no systematic errors are present. It is possible, how-
ever, 10 state an interval about the mean x which has
been corrected to eliminate known systematic errors (see
subclause 3.3.2}. This interval embraces the expectation
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with a given probability {1 — a). The limits of this inter-

val ara termed the confidence limits for the expectation

and the interval itself is termed the confidence interval

for the expectation, assigned to the confidence level

{1 — a). The chosen confidence level (1 — o) must there-

fore always be stated in connection with the confidence

interval.

It nathing to the contrary is agreed, the confidence level

1 — =95 % shall be used (see 1SO 3534) .

Note. The confidence level {1 — o) was previously often
called the ""confidence probability” and denoted
by the symbol P.
With regard to the use of preferred values of the
confidence level in practical applications, the fol-
lowing should be noted: {n physics and in survey-
ing practice, calculations are largety made with the
simple magnitude of the standard deviation, and
the Jow confidence level of 1 — a = 68,26 % which
this involves is deliberately accepted. The uncer-
tainty of the natural physical constants is likewise

more recently, round figures, 8.g.1—a=99%,
are preferred internatiopally. | n industry wide use
is made, also internationally, of the confidence
level 1 —a =95 %. This is the basis, for example,
of all ASTM Standards 4} and of the German
mineral oil standards.

The question as to which confidence level to work
with depends on the problem concerned or on
agreement; a general ruling covering all sectors s
peintless. If nothing is stated about the confidence
level it should always be permissible to assume a
confidence level of 1 —a =95 %,
tn this standard it is taken that the measured values
derive from a normal distribution and are obtained inde-
pendently of one another.
When calculating the confidence limits a distinction shall
be made between cases in which the standard deviation o
{see clause 2} is unknown (e. g. when novel kinds of test
are involved} and cases in which it is adeguately known
from experience gained with earlier measurements.

indicated by the simple standard deviation. In bio-
logy for a long time past the high confidence level

1 —a=99,73% (3 o) has been deemed appropriate; 4} ASTM = American Society for Testing and Materials

Table 1. Values of ¢ and tA\/nt for different values of the confidence level {1 — o)

Numbern |1-a2=6826%| 1-2=090% 1-2=95% 1—-a=99% 1—a=995% 1—a=99,73%
of individual )

values - t thn t tifn t thn t thin | ¢ tin t ihn

2 184 1 130 | 831 | 446 | 1271 898 | 6366 | 4501 | 127,32 90,03 | 2358 | 1667

3 132 | 076 | 292 | 1698 | 430 | 248 9,93 573 | 1409 | 813 19,21' 11,08

4 1,20 | 080 | 235 | 198 | 318 159:| 584 | 202 745 | 3713 922 | 461

5 115 | 051 [ 213 { 095 | 278 124 4,80 2,06 560 ! 2,50 6,62 2,96

8 111 | 045 | 202 | 082 | 257 | 105 4,03 1,65 477 195 5,51 2,25

8 108 | 038 | 190 | 067 | 237 084 3,50 1,24 403 | 142 4,53 1,60

10 106 | 034 | 1838 | 058 | 226 071 3,25 1,03 389 | 117 4,09 1,28

13 105 [ 029 | 1,78 | 049 | 218! 080 305 | 085 343 | 098 3,76 1,04

20 - | 103! 023 | 1,73 | 039 2,00 | D48 2,86 | 064 3171 071 345 077

30 102 | 019 | 1,70 | 0,31 2,05 | 0,37 276 | 050 304 056 3,28 0.60

32 102 | 018 | 1,70 | 0,30 | 204 | 036 274 | 048 302 053 3,26 0,58

50 101 [ 014 | 188 | 024 | 2011 028 2,68 | 038 294 | o042 316 045

ao 100 | 011 | 166 | 0,19 1,99 { 022 284 | 030 289 | o032 3,10 0,35

100 1,00 | 0,10 | 1,66 | 0,17 188 | 020 2,63 0,26 287 02¢ 3,08 031

125 100 | 008 | 1,66 | 0,15 1,98 | 0,18 2,62 0,23 286 | 026 3,07 0,27

200 100 | 007 | 1,65 | 012 1,97 | 0,14 260 | 018 284 | 020 304 021
(e, 200 )| 100 1;; 165 1;5 196 1;8 2,58 2;18 2,81 2";_1 3,00 GEO
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Table 2. Confidence limits and confidence interval for the expectation U with known standard deviation o

Confidence level . Lower Upper Confidence interval
{(1—a}in% confidence limit confidence limit
_—— —_— _ G _ 0
68,26 x—ﬁ x+ﬁ x—‘-'/-_,; g,ugx+‘/—;
' 1650 1650 _ 1650 _ 1850
20,0 x— JE X+ ‘/; - ‘/E <SpHLE+ ﬁv'
1960 1,960 _ 196¢c _ 186a
25,0 X - ﬁ X+ ﬁ x— \/ﬁ LpuLx+ Jr_r
2,580 258¢ _ 25B¢g _ 2580
99,0 X~ Jr_z x+ ﬁ x— «fﬁ SHLXA+ \/r?
_ 281¢ 2810 _ 2810 _ 2Big0
99,5 X— T X+ i X — N <pULx+ N
_ 30 3g _ 3¢ _ 3o
98,73 x-——n x+ﬁ x-——rn—gpgx-a-ﬁ

5.3.2 Confidence limits and confidence interval
with unknown standard deviation ¢

In many practical cases only the {empirical) standard
deviation s of a series of measurements with n individual
measured values is Known {equation 2). In such cases the
confidence limits for the expectation u, which are dis-
posed symmetrically relative to the mean, are given by '

t
Upper confidence limit: X+-—=s5
/n :
4
o (4)
X——s
n

Lower confidence limit:

The factor t depends on the chosen confidence level

{1 — &) and also on the number i of the individual values.

For the six values 1 — a = 68,26 %; 80,0 %; 85,0 %,

99,0 %: 99,5 % and 89,73 % the assigned values of the

factor t (Student t-gistribution) and t/A/r are listed in

table 1. Table 1 shows that when 0 is unknown and the
number n is small, a wide confidence interval has to be
accepted. '

Note. Instead of the number n of individual values in col-
umn 1 of table 1, in other tables the values for ¢
are often stated as a function of the degree of free-
domf=n-1.

5.3.3 Confidence limits and confidence interval

with known standard deviation o

When the standard deviation o is adequately known for
practical purposes through experience gained with earlier
measurements, the expressions for the confidence limits
and the confidence interval for the expectation g in the
case of n individual measurements are shown in table 2.

6 Uncertainty of measurement u

The result of measurement from a series of measurements
is the mean x, corrected for the lgnown systematic errors,
combined with an interval in which the true value of the
measurand is presumed to lie. The difference between the
upper limit of this interval and the corrected mean or the
difference between the corrected mean and the lower
limit of this intervat is termed the uncertainty of meas-
urerment u. Mostly, but not always, the two differences
are egual in value, see subclause 7.1.

212

Note, The entire span of the interval in which the true
value of the measurand is presumed to lie, in other
words the difference between the upper and lower
limits of the interval, shall not be termed the uncer-
tainty of measurement.

Below, basic rules for determining the uncertainty of
measurement u are stated. The uncertainty of measure-
ment u has two components. One of these components
relates to the random errors (random component u,)
whilst the other component relates to the unknown sys-
tematic errors (systematic component ug).

6.1 Value of the random component u,

For determining the value of the random compoenent u,
{see subclause 3.2} the following three cases shall be dis-
tinguished:

6.1.1 Series of measurements under repeatahility condi-
tions with unknown repeatability standard devia-
tion o,

Assuming a series of measurements made under repeat-

ability conditions (corresponding to subclause 4.1), the

following applies:

t
Uy=—"-5§ 1G]

Jn
As explained in detail in subclause 5.3, this is half the
span of the confidence interval for the expectation u of
the series of measurements with the confidence level
indicated there.

6.1.2 Series of measurements under repeatability con-
ditions with few individual values and with known
repeatability standard deviation o,

It often happens that each individual measurement costs
a great deal, bu1t that at the same time the standard devia-
tion o, of the random errors of the method of measure-
ment is known from earlier measurements. It is then
appropriate to use

roc:
Uy=—='a (6)
z ‘/E r
With the few n measured values x; the mean x is deter-
mined considerably better than with enly one measured
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value. On the other hand, the confidence intarval calcu-
lated from these few measured values {ci. subclause 6.1,1)
would be significantly broader than that calculated by
using the value ¢, known from experience (see example
A.2 in Appendix A,

6.1.3 Individual measured value with known repeat-
ability standard deviation o,

If only an individual measured value is avaitable and if
the repeatability standard deviation 0, is known {see sub-
clause 4.1) then the following applies:

U, =l O, (7)

if the repeatability r is stated (see subelause 4.1) it is pos-
sible to calculate from it the repeatability standard devia-
tion o, = r/2,77.

If 6, is not known, an expedient is to adopt the u, value
quoted by the measuring instrument manufacturer or to
estimate a value for u, from experience.

Note to 6.1. The equations given in subclause 5.3 apply
subject to the pravisc of normal distribution of the
measured values. If this proviso does not obtain, it
will usually not be possible to state a confidence
interval for the expectation i linked with aprob-
ability statement, |n such cases, however, it is
appropriate to indicate the random component u,
of the uncertainty of measurement by s/\/n where
5 is the {empirical) standard deviation and 1 the
number of individual values.

6.2 Value of the systematic component Uy

Generally speaking, the systematic component ug can
only be estimated by applying adequate experimental
experience (or reliable data from the manufacturer).
When making such estimates only such figures should be
used from which it can be expected that they will not be
exceeded, In general, in the absence of more accurate
knowiedge, the magnitude of unknown positive system-
atic errors and the magnitude of unknown negative
systematic errors will be taken as equal, and hence only
a single value 1z, will be stated.

Note. A possible method of arriving at a certain quantita-
tive assessment of unknown systematic errors in
specific cases is furnished by round robin tests fol-
lowing a defined (standard) method of measure-
ment, performed under strict observance of the
test conditions and involving a sufficiently large
number of participating laboratories (see'DIN
1SO 5725 and DIN 51 848 Part 1 to Part 3). The
evaluation of such round robin tests {variance ana-
fysis) leads to the two quantities repeatability r and
reproducibility R already described in clause 4. The
differance between r and R depends on systematic
errors which are unknown but differ in magnitude
in the various laboratories so that in this way a cer-
tain estimate of their magnitudes can be made.
{Compare, however, the note concerning subclause
3.3.3 and the advantage of different methods of
measurement for clarifying systematic errors).

6.3 Combining the components u, and u_ to give

the uncertainty of measurement v
There are various methods of combining the components
u; and u, to give the uncertainty of measurement u. If
the unknown systematic errors cannot be estimated, u,

has to be stated as the uncertainty of measurement, pius
a note to the effect that in u only random errors are
taken into account.

6.3.1 Method 1 (linear addition)

The simplest form of combining the components, and at
the same time the one offering the greatest security
against the risk of underestimating the uncertainty of
measurement, is linear addition of the two components

U=y + oLy (&

The additive combination is recommendable in ali cases
when one of the two components is considerably larger
than the other; the risk of overestimating the uncertainty
of measurement is then also small.

6.3.2 Method 2 (addition of squares)

If it can be taken for granted that it is permissible to
treat the systematic component u, in the same way as
the randomn component u,, the following equation may
oe adopted:

u=ulsy? (9)

Subject to the proviso mentioned, the square root of the

sum of the squares of u, and u, is always recommend-

able if the magnitudes of the two components U and ug

are approximately equal. -

Note. In cases of doubt it shall b stated whether method 1
or method 2 has been used. ’

7 Result of measurement

7.1 General information concerning the result
of measurement

The mean ¥ of a series of measurements (see subclause
5.1} has to be corrected for the known systematic errors
{see subclause 3.3.2}, 8y way of correction K (see sub-
clause 8.2.5) the corrected mean ¥y is abtained:

=%+ K (0
Apart from the mean Xg to which correction X has been
applied, the result of measurement y must always contain
the uncertainty of measurement u as indicated in sub-
clause 6.3: <

y=iptu (1)

[n equation (11) it is assumed that, as is usually the case,
the uncertainty of measurement is the same in both the
upward and downward directions {in respect of the
mean}. For the case when the uncertainty of measure-
ment upward and downward is unequal it wift as a rule
be necessary to state the two uncertainties of measure-
ment separately in addition to the mean Xg. If only one
value shal! be stated for the uncertainty of measurement,
the larger value shall be taken.

't is often desirable for the standard deviation also to be

quoted.

Note 1. In the case of an individual value the mean and
the corrected mean are replaced by the individual
values x and xy.

Note 2. For results of measurement it is not permitted
for a certain “accuracy" to be stated guantita-
rively; only the term uncertainty of measurernent
{see clause 6) shall be used.
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Examples for stating the result of measurement:

Here, as in industrial practice in general, 1 ~2=95%
shall be taken as the confidence level.

a) The random component of the uncertainty of
measurement in the indication of a thermo-
meter graduated in /10 °C is i, = 0,02 °C.
With the systematic component u, negligible in
this case, the result of measurement is
t=1{21,54 % 0,02) °C.

b} The relative uncertainty of measurement (see
subclause 7.2) in the determination of the
thermal conductivity of metals ise=2%.

Result of measurement {for an Al sample):

A=E: (1%8)
=220,0(1+002) W -K™'"-m™!

—

The frequency measuremént f = 10,38062 MHz

was unceriain by 10 Hz.

Result of measurement:

F=10,38062 MiHz £ 1 - 10~% MHz

d} In a single measurement using an Ubbelohde vis-

cometer the kinematic viscosity of a mineral oil

sample was found as v = 1260 mm? . s=1, The

reproducibility standard deviation for this known

from long experience is 0q = 0,3 mm? - 577, In

this case the resuit of measurement reads as

follows:

V=X -+ fmUR
=1250mm?2.57'£1,96.03mm?2-s™!

v=(1250*06)mm?.s7"

c

7.2 Relative uncertainty of measurement

The relative uncertainty of measurement ¢is the guotient
obtained by dividing the uncertainty of measurement u

by the corrected mean xg:
u
£ =
XE
In this case the result of measurement for the symmetri-
cal condition reads as follows:

(12)

y=¥(%¢ (13)
7.3 Indicating the resuit of measurement
for very accurate measurements
The result of measurement from a series of measurements
with n independent individual measured values is stated
completely for very accurate measurements if it contains
the following data:
— corrected mean xg {mean given by eguation {1) cor-
rected for the known systematic errors)
— number n of individual measured values and standard
deviation s

— random component u, for chosen (1 — a}

— systematic componentls) u,; if important, the pro-
portions contained in g shall aiso be stated,

8 Assessment of measuring instruments
and measuring equipment

Measuring instruments and measuring equipment (here-

after briefly referred to as measuring equipment} can be
assessed in terms of the systematic and random errors of
the measured values obtained with them.
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8.1 Assessment of measuring equipment in terms

of random errors _

The random errors (see subclause 3.2} of the measured

values obtained with a measuring equiment are assessed

with the aid of a series of measurements under repeat-
abiiity conditions, The evaluation vields a quantitative
statement concerning the precision of the measuring
equipment, for example in the form of the repeatability

standard deviation {see subclause 4.1).

Note. It shall be borne in mind that the repeatability
standard deviation may alter with any variation in
the measurement conditions (other values of the
measurand, measurement in a different measuring
range).

8.2 Assessment of measuring equipment
in terms of systematic errors
B.2,1 General

The difference between the expectation i and the true
value x,, cannot be determined exactly because both the
expectation ¢ and the true value x,, are unknown in
principle. instead of the expectation g use is made of the
arithmetic mean X, of an adequately large number of
measured values, and instead of the true value x, the
conventional true value x; is taken. The conventional
true value x, is determined with a measuring equipment
whose unknown systematic error is considerably smaller
than that of the measuring equipment to be assessed. It
is often determined with a standard instrument or a .
standard.
Note. Hence, instead of the systematic error to be
assessed

H— Xy
only its estimate
Ey,—
is known, whilst‘the difference
H=Fy— (X~ x) = (4~ 5,) — (%0 — ;)

continues to persist as the unknown systematic
error, It does not need to persist, however; for
example 1t — x, can be reduced by increasing the
series of measurements under repeatability condi-
tions and x,, — x, by having recourse to a still
more accurate measuring equipment for checking
the measuring equipment 1o be assessed.

8.2.2 Indicating measuring instrument

{measuring equipment}

If the measuring equipment to be tested is an /ndicating

measuring instrument, then X, is the arithmetic mean of

the "indicated" values {subscript a} of the measurand

read off on this measuring instrument {often termed

“indications™}. If it is known that the random errors of

the measuring instrument to be assessed are considerably
smaller than its systematic errors, it is sufficient each
time 1o determine only one indication (output) x,. Hence
the ascertained systematic error is
A,=%,—x, or A,=x,—x, (14}
Note 1. The indication x, in this sense is also termed the
actual indication in some branches of metrology.
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The prefixes “‘actual’ and ‘‘desired’’ should, how-
aver, be avoided in this context, since their use
often leads to misunderstanding.

Note 2. Iti5 expedient to reach agreement case by case
as to the manner in which the indication is to be
determined (e. g. as an individual measured value
or as the mean of a given number of individuat
values, e.g. n = 3}

Note 3. Measuring instruments with indirect output (see
DIN 1319 Part 2} are to be assessed in the same
way. Instead of the indicated values (values read
off) the output values {measurement signals or
other representations) shall be used, :

8.2.3 Material measure

If the measuring equipment to be tested is a raterial
measure, its indication {output) x {see subclause8.2.2} is
in correspondence with the inscribed value x 4 indicated
on the material measure by the inscription {subscript A).
The conventional true value x, is determined by measure-
ment of the material measure, for example by comparison
with a standard. Hence the ascertained systematic error
{of the inscribed value) is

Ap=Xp— % (15)

Note 1. In this standard a material measure is considered
a measuring instrument. For its assessment, there-
fore, the inscription {indication) is tested and the
systematic error x5 —x. = A, by which the
inscribed value deviates from the conventional true
value is ascertained and stated.

If, on the other hand, as in certain areas of linear
measurement, €. §. in the case of gauge blocks, a
material measure is considered an object to he
measured {workpiece), the test is concerned with
determining how far the conventional true value
deviates from the inscribed value {nominal size).

It is then usual to state the error as the difference
xp — x5 ; this error has the opposite sign to the sys-
tematic error A, ascertained by means of equa-
tion (15).

Note 2. The value indicated by the inscription on the
material measure is also termed the “nominal value
{nominal size}”. This shall be avoided in view of the
risk of confusion with the concept of nominal
value widely used with another meaning in techno-
logy {see, for example, DIN 55 350 Part 12 and
DIN 40 200). in cases of doubt, the basis to which
the ascertained error relates {e.g. indication, inscrip-
tion} shall always be stated.

8.2.4 Relative indication of the ascertained systematic
error

For the relative indication various reference values are
possible, In most cases the conventional true value is
used as the reference value. In the case of indicating
measurjng equipment the systematic error is related in
the majority of instances to the end vatue of the measur-
ing range (see, for example, DIN 43 780}, The relative
values of the ascertained systematic error are usually
stated in percent. The reference value appiied must be
made clear by means of a formuia or by the text.

8.2.5 Correction

The correction K has the same magnitude as the ascer-
tained systematic error as given by equation {14) and
equation {15}, but has opposite sign, hence

K=—-A, (16)
and for material measures

K=—Ayu (17}

8.2.6 Examples

8.2.6.1 Indicating measuring liquid-filled thermometer,
instrument: scale interval 0,1 °C
Mean of n = 10 indications in
the repeatability measurement
series: 1,=2015°C
Conventional true value of
temperature, obtained as
indication of a standard
thermometer, e. g. a plati-
num resistance thermometer: ¢ =2001°C
Ascertained systematic error
of indication of the thermo-
meter: ’ AA=t— ~t,=0,14°C
K=t,~f,=—014°

8.2.6.2 Indicating measuring voltmeter, measuring
instrument: range 3 V, accuracy class
0,05 as specified in
DiN 43 780

Correction:

Mean of n = 10 indications in
the repeatability measurement
series: U, = 18249V

Conventional true value of

. voltage, determined with the
" aid of a voltage calibrator of
. high accuracy:

U,.=1,8240V
Ascertained systematic error

. of indication of the measur-

ing instrument: R,=U,—U,=~00009V

Relative value of the ascer-  Ua— Uy 00009
tained systematic error re- U, . 3

ferred to the end value Ug: =0,0003=003%
Correction: 'K=-0,0009V

8.2.6.3 Material measure: 1 §2 resistor
Resistance as per inscription: R, =1,00000
Conventional true value: R; =1,0019Q

Ascertained systematic error
of the inscribed value of the
material measure:

Relative indication referred
to the conventional true
value:

Correction:

Apa=Ra—R,=-0,00180

{Ra=R)R, =-019%
K=R,~R,=00019Q

B8.2.6.4 Mechanical
material measure:

a) Considered as measuring
instrument
Length as per inscription:
Conventional true value:

70 mm gauge block

LA =70mm
L, =69,998mm

215
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Ascertained systematic
error of the inscribed

value of the gauge block:
Relative indication referred
to the conventional true
value:

Ap=La—L,=0002mm

(La~L;)/L,=0,0029%

Correction: K=—As=-0,002mm

b) Considered as an object
to be measured {see sub-
clause 8.2.3, Note 1}
Length as per inscription:
Conventional true value:
Deviation of conventional
true value from inscribed
value:

Lo=70mm
L, =69,988mm

L,—Ls=~0002mm

8.3 Limits of error

8.3.1 Concept

Limits of error as agreed maximum magnitudes of {posi-
tive or negative} errors of indication {output) of measur-
ing equipment {maasuring instruments).

Limits of error are specified principally in respect of sys-
tematic errors of the measured values from the conven-
tional true value or some other defined or agreed value
of the measurand; they shall also not be exceeded by
random errors {see Appendix A, subclause A4},
Different limits of error may be specified for the magni- .
tudes of the positive errors and negative errors. These
are termed the upper limit of error G and the lower
limit of error G,;. In the majority of cases, however, the
upper and lower limits of error are the same. They are
then referred to as symmetrical limits of error and
designated by G. 3

Hence, in the symmetrical case, the following basic rela-

tionship exists for the indication {output) x, of a measur-

ing equipment {a measuring instrument} in respect of the
limit of error G:

-G <x+G (18)

in the unsymmetrical case the following applies:
i=GuLx<x+G, ‘ (19)

In the case of material measures, x5 shall be used in

equation (18) and equation (19} instead of x,.

Limits of error may be stated in units of the quantity

concerned or referred to the end value of the measuring

range or referred to some other value, The relative state-
ment is usually made in percent, for example in percent
of the end value of the measuring range of an electrical
measuring instrument.

Note 1. The limits of error G indicate within what limits
a measured value (result of measurement) deviates
from the conventional true value, i. e. may be
incorrect, and they are dictated primarily by sys-
tematic errors deriving mostly from the unavoid-
able discrepancies arising during manufacture of
the measuring instruments.

The range fixed by the limits of error shall be con-
siderably larger than the random component u, of
the uncertainty of measurement of an individual
value {see subclause 6.1.2),
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Limits of error comprise — uniess specially agreed
otherwise — the ascertained systematic errors as
well as discrepancies dictated by the technical pos-
sibilities and unavoidable inconsistencies of manu-
facture of measuring equipment, and by ageing
effects. I the limits of error apply only under
specific (qualifying) secondary conditions {e. q. at
a temperature of 20 °C or in a temperature range
of 10 to 30 °C), these secondary conditions shall
be stated.

Note 2. In the case of many measuring instruments the
non-transgression of the limits of error is only
guaranteed subject to observance of specific refer-
ence conditions for the prevailing influence quan-
tities A, B, ... . These influence quantities are
physical quantitites which are not an object of the
measurement (e, g. ambient iemperature, humidity,
atmospheric pressure, interference fields). They do,
however, exert arn unwanted influence — from out-
side — on the indication (output) of the measuring
instruments and hence on the measured value of
the measurand and in this way bring about system-
atic errors. For details regarding electrical measur-
ing instruments, see DIN 43 780.

8.3.2 Fixing the limits of error

Limits of error are fixed by agreements or specifications,
for example in the Ordinance on weights and measures,
in standards (for example, standards of the 57 472/
VDE 0472 series, DIN 43 780) and in other regulations,
as well as contractually.

8.3.2.1 Verification limits of error

Verification limits of error are limits of error prescribed
by legislation in the Ordinance on weights and measures.
Note. A rmeasuring equipment is given the verification
mark by the verification authority only if no devia-
tions of the measured values from the conventional
true velue of the more accurate measuring equip-
ment used for testing or of the standard or siandard
procedure adopted for testing are ascertained whose
magnitudes are greater than the verification limit
of error. 1T errors of measurement of larger magni-
tude are ascertained, the meashring equipment being
tested counts as faulty within the meaning of quality
contro! and cannot be given the verification mark.
8.3.2.2
In-service Iimits of error are the limits of error applicable
to the measuring instrurments in practical use. They are
prescribed by legislation.
Note, The in-service limits of error are generally sym-

metrical and amount to twice the verification
limits of error.

In-service Himits of error

8.3.3 Stating limits of error

Limits of error are magnitudes and are therefore stated
without sign, i.e. as the value G in the symmetrical case
and as the values G, and G in the unsymmetrical case.

MNote. The earlier practice of stating limits of error with
the sign % in the symmetrical case and with the
— sign and the + sign in the unsymmetrical case is
not recommended. |t would then no longer be per-
mitted to equate the noncompliance with the
requirement given by a limit of error by the words
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“transgression of the limit of error”’; a transgres-
sion of the lower limit of error {e. g. a deviation of
— 4 when the limit of error is — 5} waould mean
that the requirement given by this limit of error
was just complied with.

The following cases can arise when stating limIts of error,

8.3.3.1 Symmetrical limits of error G

The normal case in practical metrology is for the limits
of error to be symmetrical. For these only one value

G = (G, = G, is stated. Hence, conversely, the stating of
anly one value G signifies that symmetrical limits of
error are involved,

8.3.3.2 Unsymmetrical limits of error G, and G,

In these cases, which occur less frequently, the two limits
of error G, and G, are to be stated separately.

8.3.3.3 Indirect stating of the limits of error by giving
the limiting values for the indication (output}
Instead of the limits of error in respect of a conventional
true value x, of the measurand, a lower and an upper
limiting value {minimum value and maximum value} are
stated for the indication of the measuring equipment.
For example, see subclause 8.3.3.4.5.

8.3.3.4 Examples for stating limits of error

8.3.3.4.1 Stating the limits of error in'units of the
measurand, illustrated by the example of the verification
limit of error of a mercury-in-glass thermometer:

G=0,2°Cat20,0°C
or G=02Kat200°C
The indicated temperature vatue £, may therefore lie in

the following range about the verification value
t,=200°C:

20,0°C ~0,2°C < t, < 20,0°C + 0,2°C

8.3.3.4.2 Stating unsymmetrical limits of error in units
of the measurand, illustrated by the example of the veri-
fication limits of error of clinical thermometers:

Gy=015°C; G,=0,10°C .

For the indicated temperature value t,, tharafore, the
following condition applies:

L=015°C < t, < {, +0,10°C
8.3.3.4.3 Stating a unitateral limit of error in units of
the measurand, illustrated by the example of the verifi-
cation limits of error of a material measure:
Weight conforming to the medium class of error {imits,

inscription 500 g; conventional true value of the weight m,:

G, =100mg; Go=0mg

Hence the inscribed value m, = 500 g is ta lie within
the following limits:

m, - 100mg < 500g € m; + 0mg

This is equivalent to the statement that the verified
weight bearing the inscription 500 g shall not be lighter
than 500 g and not more than 100 mg heavier than
500 g.

8.3.3.4.4 Stating the relative value of the limit of error
referred to the end value, illustrated by the example of
the limit of error for voltage measuring equipment of
high accuracy with the end value U,

G
—=0,1%
Ue <
Hernce, the following applies for an indication U, of the

voltrmeter in respect of the conventional true value U, of
the voltage:

Up—0,1% Ug < U, < Us + 0,1 % U,

8.3.345 Example (thermometér) for indirectly stating
the limits of error: for a defined conventional true value
the limits for the indication {output) are specified:

—"conventional true value 20,0 °C
—. minimum value 18,8 °C
— maximum vatue 20,2 °C

The indicated temperature value t, may therefare lie in
the range ‘

19,8°C < t, < 20.2°C

it the conventional true value is 20,0 °c.

217
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Appendix A

Examples

A.1T Measurement of a base quantity

A.1.1 The intention is to measure the length of a rod
having a value of 150 mm (inscription) with an indicating
length measuring instrument (visual method). Testing of
the fength measuring instrument has revealed that its
indication in the measuring range concerned has a cor-
rection K = + 0,06 mm (see subclause 8.2 5). For meas-
uring the length of the rod 20 individual measurements
were made under repeatability conditions, These n = 20
individual values are listed below under A.1.2. From
them the arithmetic mean x, the {empirical} standard
deviation s and the confidence limits for the expectation
for a confidence ievel 1 — & = 85 % shall be calculated.
To make'the details of the evaluation method clear, the
“caleulation procedure is presented in detail with the aid
of this simplte example; generally speaking, the computer
will operate with the second form of equation (2) in sub-
clause 5.2 {however, an adequate number of places shal

be ensured when using the computer for this caleulation).

A.1.2 Individual values x4 to x5,

Measurement | Lengthx; | 10°. (x;— %) | 10%. (x,~ Jc)2
No, in mm inmm in mm?2
1 150,14 412 144 |
2 150,04 + 2 4
3 149,87 - 5 25
4 150,08 + 8 36
5 149,93 -9 81
<} 149,89 -3 9
7 150,13 +11 121
8 150,09 + 7 49
9 149,88 -13 165
i0 150,01 - 1 1
11 149,99 -3 9
12 150,04 + 2 4
13 150,02 ) 0
14 149,94 - 8 64
15 150,19 +17 289
16 149,93 -8 81
17 150,09 + 7 49
18 149,83 —19 361
19 150,03 + 1 1
20 150,07 + 5 25
) 3000,40 o 1522
A.1.3 Mean
1 2
= 5 ,; 1= 5o+ 300040 mm = 150,02 mm

This mean X has to be corrected by the ascertained cor-
rection K,
The corrected mean is

Xg=X+ K=150,02mm + 0,06 mm = 150,08 mm
218

A.1.4 (Empirical} standard deviation 5

The standard deviation s is calculated by means of equa-
tion (2).

V-I 20
s=\— ¥ (x—
19 f§1 ( !

]
=\/1-§- 152210 *mm? = 0,09 mm

150,02 mm)?

A.15 Confidence limits for the expectation

1 — & =85 % was given as the confidence level. The
values t = 2,08 and t/\/_ 0,48 are found for this from
table 1 in clause 5 for n = 20. Hence the following are
obtained for the condidence limits of the mean (equa-
tion (4)):

lower confidence limit

4
Xg — -z=5= 150,08 mm — 0,04 mm = 150,04 mm
n

upper confidence limit

; .
¥g + =5 = 150,08 mm + 0,04 mm = 150,12 mm
n

A.1.6 Result of measurement

The result of measurement for the wanted length L of
the rod is (equation {10)};

L= EE Tu
From the equations (8} and (8) it is found that u has a
random component i, (eguations {5) to (7)) and a sys-
tematic component ug. In the present case u, = 0,04 mm
{see subclause A.1.5), The systernatic component U in
the present case is so small that it may be ignored. Hence
the confidence interval for the expectation becomes the
confidence interval for the true vaiue.
The following applies:

Lergth L = 150,08 mm £ 0,04 mm

The result of meesurement can also be stated using the
relative uncertainty of measurement ¢ (see equation
(11}}. In this case

The rounded result of measurement is now:

L =150,08{1+£0,0003)mm = 150,08-(1 + 0,03 %) mm

A.2 Example of a derived quantity

it is intended to measure the thermal conductivity A of

a sample of structural steel at 203 °C. As a suitable
method it was decided to measure the axial temperature
gradient in a cylinder with a length of 90 mm and a diam-
eter of 50 mm conveying the heat flux 1o be measured,
In a repeatability series of measurements n = 5 individual
values were measured and in this way the mean

x =b43W.K~1.m~" was obtained, This mean has to
be corrected for a known systematic error brought about
mainly by unavoidabte, but computable heat |osses and
by measured distortions of the temperature field. These
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errors lead to a correction K =+ 0,4 W . K=1 - m~—'. The
corrected mean is

Fp=E+K=(543+0HW -K'.-m™!

=547TW-K.m™

From numerous earlier tests the standard deviation
2, =034 W.K~T.m~" is known. In this way the ran-
dom component u, of the uncertainty of measurement is
found (with 1 =a =095 % /m=+/5=2,24;186A/n =
0,88 from table 2}:

1, =088-034W- K-

Also linked to such measurements of thermal conductiv-
ity is an unknown systematic error u,; this is brought
about by unknown heat losses, perturbations due to
mounting, and non-measurable or non-calculable distor-
tions of the temperature field. From long experience u,
is estimated at the following value symmetrical on either
side of the mean

u,=09W.K*.m

m'=03W-K'.m!

From this the uncertainty of measurernent is found from
equation (8) to be

U=, +u=03+0FHW -K*-m™
=12W-K-m™.

Therefore the result of measurement is:

Thermal conductivity A = (64,7 £ 1,2} WK~ . m™!

Taking the relative uncertainty of measurement as

e=ufi =0,022, the resu]t of measurement is written as

follows:

Therral conductivity A= 54,7 - (1 £ 0,022) W - K“ -m~.
=547 -(1£22%W-K'-m™

A.3 Estimating an unknown systematic error

When measuring the length of measuring rules (levelling
staffs) with the aid of a comparator the value obtained
under repeatability conditions {(without change of posi-
tion of the rules) for the random component 1, was

5 um for the confidence fevel 1 — a = 95 %, the number
of measurements n being 10. Further measurements with
the rule in different positions {change of mounting) led
to different measured values with deviations frem the
mean of the repeatability series of measurements ranging
from — 30 um to + 30 pm. It can be conciuded from this
that in this case unknown systematic disturbing influ-
ences are effective from the start. They have to be allowed
for by a systematic component u, of the uncertainty of
measurement and, in view of the random component

u, = 5 um, are estimated as u,~ 25 um.

A.4 Meaning of limits of error

The cancepts defined in subclause 8.3 are illustrated by
the simple example below (see also DIN 1318 Part 2).

A mercury thermometer has a measuring range from
—10°C to 110 °C and is divided in /10 °C {scale inter-
val 0,1 °C). As specified in Appendix 14 of the Ordinance
on weights and measures the symmetrical verification
limits of error (see subclause 8.3.2.1} for this thermom-
eterare G=0,2 K or0,2°C.

The thermomaeter is tested in a water bath at the “con-

ventional true’” temperature of 20.00 °C as determined
with the aid of a standard thermometer and then shows
the temperature £, = 20,12 °c {indication, reading). At

this measuring point, therefore, the ascertained system-

atic error A, is

|l"ldlC8th|’\ - conventlonal true vaiue = 20,12 °c—
20,00°C= + 0,12 °C. The correction K is therefore
K=-0,12°C.

These values are ascertainable with sufficient reliability,
since the random component of the uncertainty of meas-
urement of an individual value as determined for this
instrument is only u, = 0,02 °C (the unknown systematic
component i, may be ignored in this case), The user of
this measuring instrument may now either content him-
self with the fact that his thermometer has received the
verificaticn mark and indicates “"correctly” within the
timits £, — 0,2 °Cto t, + 0,2 °C, or he will evaluate more
precisely and in this case has to regard the dlfference
between an indication — in the region of 20°C e. g. ty
21,43 °C in the context of this example — and the conven-
tional true value as a correction as per subclause 8.2.5:

t=1I;+ K=2143°C—0,12°C =21,31°C

In this case a measured value determined with his instru-
ment (with confldence tevel ¥ — =95 %) is cmly “uncer-
tain’ by u, = 0,02 °C.

With the aid of the example of the thermometer chosen
here, figure 1 makes it clear how limits of error are to be
mterpreted the conventional true temperature ¢,

20,00 °C being selected as the reference value for the
sake of simplicity.

Case 1 corresponds to a thermometer with indication

ta = 20,12°C; ¢,4 thus lies within the limits ¢, — G and
t, + G: the verification limit of error G is not exceeded.
This thermormeter receives a verification mark.

Case 2 represents a borderling case in which the indica-
tion of another thermometer t,, = 19,80 °C is equal to
the limit {, — G: the verification limit of error G is only

| just not transgressed. This thermometer is given a verifica-*
: tion mark irrespective of the fact that the random com-
. ponent of the uncertainty of measurement u,, which is
- assigned to the indication t,o, at u; = 0,02 could also lead

to values lying outside the limits t, — G and £, + G.

In case 3 the indication given by a third thermometer

ta3 = 20,21 °C is outside the limits ¢, — G and .+ G:
The verification limit of error G is transgressed by the
indication 3. This thermometer does not receive a
verification mark, regardiess of the fact that the random
component of the uncertainty of measurement u,, which
is assigned to the indication #,5,atu, = 0,02 °C could also
iead to values lying within the limits t, — Gand f, + G.

19.80°C 2000°C 20,20°C
fa1
Case 1 A
ase f ‘i ;_Z-U!
a2
1V
Case2 - !2 "
et )
a3
Case 3 !
] 12 Uy
1

Conventional Maximurmn value
true value t+ 0

t

Different cases of the indications £,q, .2, tag

Minimum vaiue
=0

Figure 1.
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Standards referred to and other documents

DIN 1313 Physical quantities and equations; terminology, methods of writing

DIN 1318 Part1 Basic concepts in metrology; measuring, counting, testing

DIN 1319 Part 2 Basic concepts in metrology; terminology relating to the use of measuring instruments

DIN 40 200 Nominal value, limiting value, rated value, rating; terminatogy

DIN 43780 Electrical measuring instruments; direct-acting indicating measuring instruments and accessories

DIN 51 848 Part 1 Testing of mineral oils; precision of test methods; general, terminology and its application to
mineral oil standards containing requirements

DIN 51 848 Part 2 Testing of mineral oils; test errors, planning of round robin tests

DIN 51 848 Part 3 Testing of mineral oils; test errors, calculation of test errors

DIN G5 302 Part1 Statistical evaluation methods; frequency distribution, mean and variability, basic concepts and
general calculation methods,

DIN 55 302 Part 2 Statistical evaluation methods; frequency distribution, mean and variability, calcutarion methods

for special cases

DINB5 350 Part 12 Concepts in quality assurance and statistics; concepts in quality assurance, concepis relating to
characteristics

DIN 55350 Part 13 Concepts in guality assurance and statistics; concepts in quality assurance, concepts relating to
accuracy

Standards of the
DIN 57 472/VDE 0472 series Testing of cables and Insulated conductors

DIN IS0 5725 Precision of test methods; determination of repeatability and reproducibility by inter-laboratory
’ tests
1S0 3534 Statistics; vocabulary end symbols

Ordinance on weights and measures, Appendix 14 Temperature measuring instruments

Other relevant standards
DiN 55 350 Part 11 Concepts in guality assurance and statistics; concepts in quality assurance, basic concepts

Previous editions
DIN 1319: 07.42, 01.82, 12.63; DIN 1319 Part 3: 12.68, 01.72

Amendments

Completely revised compared with the January 1972 edition; assessment of series of measurements and measuring instry-
ments separated; clause on error propagation deleted. See Explanatory notes.
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Explanatory notes

The previous edition of DIN 1319 Part 3 has undergone fundamental revision in this standard. Detailed discussions on this
revised standard have been held with experts outside AEF and have been conducted in particular with the Committee
Oua/.'tatssmherung und angewandte Statistik (A QS) of DIN. Part 3 deals with two topics which need to be dlfferentlated
from one another but are applied jointly by the user in practice and therefore belong together:
a) determining the value of a physical quantity {measurand) from a series of measurements with n individual values,
clauses 1 to 7. .
b) assessing measuring instruments with the aid of the concepts “ascertained systematic error” and “correction”, clause 8.
The earlier Error propagation clause has been deleted. |ts content is to be dealt with in revised form in a further part of
DIN 1319. Instrumental for this decision was the fact that propesals for a general and unified treatment for combining the
uncertainty of measurement u from two components i, {random type) and u, {systematic type) has been made from vari-
ous sides and are still being examined {cf. S. Wagner, On the Quantitative Characterization of the Uncertainty of Experi-
mental Results in Metrology. PTB-Mitt. 89 (1979) No 2, p. 83: also VDE/VDI-Richtlinie (Code of Practice} 2620 Part 1).

International Patent Classification
G

Alphabetical index

The figures following the key words are clause/subclause numbers

Accuracy 7.1

Actual indication, actual value 8.2.2

Arithmetic mean 2,5.1

Ascertained systemnatic error 8.2.2, 8.2.3, B.2.6.1
Ascertained systematic error {refative indication) 8.2.4
Assessment of measuring instruments 8

Base quantity A1

Coefficient of variation 5.2
Combining the compoenents u, and 1, 6.3
Components, combining 6.3
Component, systematic 6.2
Confidence interval 2, 5.3
Confidence level 5.3.1

Confidence Iimit 5.3, A.1.5
Confidence probability 5.3.1
Cornventional true value 8.2.1,A4
Corrected measured value 3.3.2
Correction 3.3.2,8.2.5

Degree of freedom 5.3.2
Derived quantity A.2

Empirical standard deviation 2,52, A.1.4

Environmental influence 3

Error, ascertained systematic 8.2.2, 8.2.3, 8.2.6.1

Error, known systematic 3.3.2

Error of measurement 2, 3

Error, random 2

Error, random (measuring instrument) 8.1

Error, random (series of measurements} 3.2

Error, systematic 2

Error, systematic {measuring instrument) 8.2

Error, systematic {series of measurements) 3.3

Error, unknown systematic 3.3.2, A3

Estimation 3.3.3, A.3

Estimate (expectation} 2, 5.1

Estimate {standard deviation} 2, 5.2

Examples {ascertained systematic error of measuring
instruments) 8.2.6, Appendix A

Examples (stating fimits of error}) B8.3.3.4

Expectation 2

.............. Eidmmms 15221 £
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Expectation (estimate}) 2,5.1

Falsified 3
Field of application 1
Fixing limits of error 8.3.2

Gauge blocks 8.2.6.4

Incorrect 3.3.2, 8.3.1

Independent 5.1

Indicating measuring instrument B.2.2
Individual measured value 6.1.3
Individual vaive A.1.2

Influence due to observer 3.1
Influence quantity 8.3.1

In-service {imit of error 8.3.2.2"

Known systemnatic error  3.3.2

Lirniting value for indication 8.3.3.3
Limit of error 8.3 .

Limit of error (fixing) 8.3.2

Limit of error (meaning} A.4

Limit of error {stating) 8.3.3

Limit of error, symmetrical 8.3.3.1
Limit of error, unilateral 8.3.3.4.3

Limit of error, unsymmetrical 8.3.3.2

Material measure 8.2.3,8.2.6.4
Maximum value A4

Mean 5.1,A.1.3

Mean, arithmetic 2, 5.1

Meaning of limits of error A.4
Measurand 2.3.1

Measured value, corrected 3.3.2
Maasured value, individual 6.1.3
Measured value of a series of measurements 2,5
Measurement object 3.2,4.1,4.2,8.2.3
Measurement of a base quantity A.1
Measuring equipment 1,8

Measuring instrument {assessment) B
Measuring instrument, indicating 8.2.2
Minimum value A.4
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Normal distribution 2,5.3.1, 6.1

Precision 4.2, 8.1
Probability, confidence 5.3.1
Probabilfity distribution 2

Quantity, derived A.2

Random component 6.1

Random error 2

Random error (measuring instrument) 8.1

Random error (series of measurements) 3.2

Random variability 5

Random variable 2

Relative indication of ascertained systematicerror 8.2.4

Relative uncertainty of measurement 7.2

Repeatability 4,1

Repeatability condition 4.1

Repeatability condition (series of measurements) 6.1.1,
6.1.2

Repeatability standard deviation 4.1

Reproducibility 4.2

Reproducibility condition 4.2

Reproducibility standard deviation 4.2

fesult of measurement 2, 7, A.1.6

Round robin test 3.3.1, 4.2

Scope 1
Series of measurements 2, 5

Series of measurements under repeatabifity conditionsf
5.1 ‘
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Standard deviation 2

Standard deviation, empirical 2, 5.2, A1.4
Standard deviation (estimate) 2, 5.2
Standard deviation, known 5.3.3

Standard deviation, unknown 5.3.2

Stating limits of error 8.3.3

Stating limits of error (examples) 8.3.3.4
Symmetrical limit of error 8.3.3.1
Systematic component 6.2

Systemnatic error 2

Systematic error {measuring instrumeni) B.2
Systematic error (series of measurements) 3.3

Test condition 4
True value 2

t-{Student) factor 5.3.2

Uncertain 3.2

Uncertainty of measurement 2, 6
Uncertainty of measurement, relative 7.2
Unilateral limit of error 8.3.3.4.3
Unknown standard deviation 5.3.2

Unknown systematic error  3.3.3, A.3
Unsymmetrical limit of error 8.3.3.2

Value, conventional true 8.2.1 AL
Value, true 2

Variability 3.2

Variance 5.2

Verification limit of error 8.3.2.1





